Machine translation evaluation with neural networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine translation evaluation with neural networks

We present a framework for machine translation evaluation using neural networks in a pairwise setting, where the goal is to select the better translation from a pair of hypotheses, given the reference translation. In this framework, lexical, syntactic and semantic information from the reference and the two hypotheses is embedded into compact distributed vector representations, and fed into a mu...

متن کامل

Machine Translation Evaluation using Recurrent Neural Networks

This paper presents our metric (UoWLSTM) submitted in the WMT-15 metrics task. Many state-of-the-art Machine Translation (MT) evaluation metrics are complex, involve extensive external resources (e.g. for paraphrasing) and require tuning to achieve the best results. We use a metric based on dense vector spaces and Long Short Term Memory (LSTM) networks, which are types of Recurrent Neural Netwo...

متن کامل

Pairwise Neural Machine Translation Evaluation

We present a novel framework for machine translation evaluation using neural networks in a pairwise setting, where the goal is to select the better translation from a pair of hypotheses, given the reference translation. In this framework, lexical, syntactic and semantic information from the reference and the two hypotheses is compacted into relatively small distributed vector representations, a...

متن کامل

Additive Neural Networks for Statistical Machine Translation

Most statistical machine translation (SMT) systems are modeled using a loglinear framework. Although the log-linear model achieves success in SMT, it still suffers from some limitations: (1) the features are required to be linear with respect to the model itself; (2) features cannot be further interpreted to reach their potential. A neural network is a reasonable method to address these pitfall...

متن کامل

Refining Source Representations with Relation Networks for Neural Machine Translation

Although neural machine translation (NMT) with the encoder-decoder framework has achieved great success in recent times, it still suffers from some drawbacks: RNNs tend to forget old information which is often useful and the encoder only operates through words without considering word relationship. To solve these problems, we introduce a relation networks (RN) into NMT to refine the encoding re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Speech & Language

سال: 2017

ISSN: 0885-2308

DOI: 10.1016/j.csl.2016.12.005